If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+16x=12
We move all terms to the left:
2x^2+16x-(12)=0
a = 2; b = 16; c = -12;
Δ = b2-4ac
Δ = 162-4·2·(-12)
Δ = 352
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{352}=\sqrt{16*22}=\sqrt{16}*\sqrt{22}=4\sqrt{22}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4\sqrt{22}}{2*2}=\frac{-16-4\sqrt{22}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4\sqrt{22}}{2*2}=\frac{-16+4\sqrt{22}}{4} $
| 3-2x+8=-1 | | 3x+1=-28 | | 64=100x | | 0.035=64=x=100 | | (2x*x)+50=850 | | 7-9m=-1 | | 5x2+340x-600=0 | | 2x+2(2/3)x=38 | | -0.25x^2+14x+86=50 | | 5a^2+2=22 | | (1+h)(4)= | | 5m+8=14-3 | | -2(x+5) ÷5=6 | | 1v+1=2 | | 3+–1r=1 | | 2x+3=20x= | | k=8= | | (x+4)^2=4^2 | | v=12403-12403(.09)(1.75) | | 4x^2-32=5x^2+18x | | 10/6=0.04x | | m1+75=180 | | 4x-3(4x-14)=15 | | 8÷2(x+x)=16 | | 6(x-2)=6x+(-12) | | 3x+4÷=6 | | 2n2-18n+40=0 | | 6=n×84 | | k/8.5+95.5=13.4 | | -5x+1=-3x-1 | | -8.5x+0.68=-2.72 | | 13x-5=59 |